
Investigating Difficult Topics in a Data Structures Course
Using Item Response Theory and Logged Data Analysis∗

Eric Fouh
Department of Computer
Science & Engineering

Lehigh University
Bethlehem, PA 18015

efouh@cse.lehigh.edu

Mohammed F. Farghally
Department of Computer

Science
Virginia Tech

Blacksburg, VA 24061
mfseddik@vt.edu

Sally Hamouda
Department of Computer

Science
Virginia Tech

Blacksburg, VA 24061
sallyh84@vt.edu

Kyu Han Koh
Department of Computer

Science
Virginia Tech

Blacksburg, VA 24061
kyuhan@vt.edu

Clifford A. Shaffer
Department of Computer

Science
Virginia Tech

Blacksburg, VA 24061
shaffer@vt.edu

ABSTRACT
We present an analysis of log data from a semester’s use
of the OpenDSA eTextbook system with the goal of deter-
mining the most difficult course topics in a data structures
course. While experienced instructors can identify which
topics students most struggle with, this often comes only
after much time and effort, and does not provide real-time
analysis that might benefit an intelligent tutoring system.
Our factors included the fraction of wrong answers given by
student, results from Item Response Theory, and the rate
of model answer and hint use by students. We grouped
exercises by topic covered to yield a list of topics associ-
ated with the harder exercises. We found that a majority of
these exercises were related to algorithm analysis topics. We
compared our results to responses given by a sample of ex-
perienced instructors, and found that the automated results
match the expert opinions reasonably well. We investigated
reasons that might explain the over-representation of algo-
rithm analysis among the difficult topics, and hypothesize
that visualizations might help to better present this mate-
rial.

Keywords
Item Response Theory, learning analytics, eTextbooks, al-
gorithm analysis, data structures and algorithms

∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.

1. INTRODUCTION
Knowing what topics are challenging to students helps ed-
ucators better allocate course resources. We present tech-
niques to automatically determine topics that are most chal-
lenging based on student interactions within the OpenDSA
eTextbook system [9, 10]. While experienced instructors
can identify which topics students most struggle with, au-
tomated measures can be useful for a variety of reasons. 1)
Identifying key topics takes a lot of time and effort on the
part of instructors; 2) They can help instructors teaching
new material or with a new approach; 3) They can be used
by an intelligent tutoring system (ITS) to automatically di-
rect more instruction to a topic; and 4) They can help find,
confirm, and quantify relationships and provide new insights
that might be missed even by experienced instructors.

Our study focuses on a post-CS2 data structures and algo-
rithms course (henceforth referred to as “CS3”). We used
two approaches to identify difficult course topics. The first
is Item Response Theory (IRT), a latent trait models (LTM)
technique to analyze student responses to problems. LTM
assumes that test performance can be predicted by specific
traits or characteristics [13]. IRT provides a model-based
association between item responses and the characteristic
assessed by a test [7]. The second approach consisted of
an analysis of student interactions with exercises to identify
harder exercises. We investigated the incidence of guessing,
the use of hints, and the level of interactions with embedded
model answers by students when solving exercises.

We found that the most difficult topics in the CS3 course are
related to algorithm analysis. While this is not surprising to
us, we also investigated possible reasons that might explain
the topics’ difficulty. Based on our study, we present some
suggestions on how to make such topics more accessible to
students.

2. RELATED WORK
IRT [19] examines test behavior at the item level, and pro-
vides feedback on the relative difficulty of the various ques-



tions. Many IRT models have been developed with the as-
sumption of 0 or 1 assigned to each response. We adopted
the one parameter (1PL) or Rasch model [16] to characterize
items and examinees. In 1PL, the probability of a positive
response from a student is a function of item difficulty and

is modeled as Pi(θ) = exp(θ−bi)
1+exp(θ−bi)

. Pi is the probability of a

correct response to item i. θ refers to the latent trait (this
is often called ability) assessed by the items being analyzed.
bi represents the difficulty of item i.

IRT has been used to evaluate students’ coding abilities in an
introductory programming course [3]. The authors used stu-
dents’ code scores to build a 1PL Rasch model. They found
that students with previous knowledge had a statistically
significant higher performance than students with no previ-
ous knowledge [3]. IRT was also used to analyze midterm
exam questions for an introductory CS course [18]. The goal
was to improve the assessment for future semesters by study-
ing questions’ item characteristic curves. IRT has been used
for problem selection and recommendation in ITS [14]. The
authors built a model based on a combination of IRT and
collaborative filtering to automatically select problems.

We know of few efforts to identify difficult topics in CS3
courses, as most such work typically has focused on in-
troductory courses [5, 6, 11]. Brusilovsky et al [4] sent a
questionnaire to CS educators asking them to report topics
that they consider critical to learn, as well as topics that
are hard to learn (for students) and hard to teach (for in-
structors). Instructors’ (n = 61) five most difficult-to-learn
topics included pointers, recursion, polymorphism, memory
allocation, and parameter passing. The five most difficult
to teach topics included recursion, pointers, error handling,
algorithms, and polymorphism. Many of these topics are
covered in CS3, but it is typically not the first time that
students will have seen them.

3. EXERCISE ANALYSIS
OpenDSA provides a collection of online, open-source tu-
torials that combine textbook-quality text with algorithm
visualizations, randomly generated instances of interactive
examples, and exercises to provide students with unlimited
practice. Content within OpenDSA is organized into mod-
ules, each focusing on a specific topic such as Quicksort or
Closed Hashing. The modules contain a wide variety of ex-
ercises. Some require that the student manipulate a data
structure to show the changes that an algorithm would make
on it. We refer to these as “proficiency exercises” (PE exer-
cises). This type of exercise was pioneered in the TRAKLA2
system [15]. OpenDSA uses the Khan Academy (KA) exer-
cise framework 1 to provide multiple choice, T/F, and short
answer exercises. We also use the KA framework to imple-
ment simpler proficiency exercises.

We studied 143 student participants enrolled in a CS3 course
at Virginia Tech during Fall 2014. OpenDSA was used as
the main textbook, and students had until the end of the
semester to complete the OpenDSA exercises. OpenDSA
exercises accounted for 20% of the course final grade.

1http://github.com/Khan/khan-exercises

3.1 Analysis of correct answer ratios
Our goal is to assign a value to each OpenDSA exercise in
terms of “relative difficulty”. We seek to find which exercises
are relatively difficult for average ability students. From
this, we hope to deduce which topics are most difficult for
students. This in turn might lead us to refocus our instruc-
tional efforts, or come up with new interventions and presen-
tation approaches. Unfortunately, it is not a simple matter
to tell whether a question is difficult. OpenDSA works on
a mastery-based system, meaning that students can repeat
a question until they get it correct. As a result, most stu-
dents earn full credit on almost all exercises. To confuse the
situation further, as is typical with online courseware, some
exercises can be “gamed” [1]. In our case, this happens when
students repeatedly reload the current page until they get an
easier problem instance to solve (though the system is im-
plemented in ways to discourage other forms of guessing on
any given question [9]). For these reasons, we cannot simply
count how many students got an exercise correct. Instead,
we developed alternative definitions for difficulty.

We analyzed OpenDSA exercises with respect to the ratio
of correct to incorrect answers as a measure of exercise dif-
ficulty, that is, harder exercises should show a lower correct
attempt ratio. To assess student performance, we use the
fraction r = #of correct attempts

#of total attempts
. For each exercise, we com-

pute the difficulty level (dl) as dl = 1 −
∑n

i=1 ri
n

where n
is the number of students and r is the ratio of correct at-
tempts. Similar metrics have been used previously to assess
exercise difficulty. In [2], the authors used “how many at-
tempts it takes for a student to determine the correct answer
once they have made their initial mistake” as a measure of
exercise difficulty for logic exercises. History of attempts
coupled with IRT was also used in [17] to estimate exercise
difficulty for an ITS.

We ranked the exercises by their dl and grouped them into
quartiles. Dl scores ranged from 0 to 0.72. Exercises in the
4th quartile (dl > 0.25) consist mainly of exercises covering
concepts related to algorithm analysis (22 out of 26 in that
quartile), and one was a code writing question. Exercises in
the 3th quartile (0.13 ≤ dl ≤ 0.25) covered mainly (14 out
of 25) the mechanics of algorithms or data structures. Ten
of these exercises covered course concepts. Exercises in the
2nd quartile (0.05 ≤ dl < 0.13) covered mainly (23 out of 25)
the mechanics of algorithms or data structures. The other
two were summary exercises covering lists and the introduc-
tion chapter. All exercises in the 1st quartile (dl < 0.05)
covered algorithms or data structures mechanics. These re-
sults indicate that students did not seem to have difficulty
completing tasks related to the behavior and the mechanics
of algorithms and data structures. They seem to have the
hardest time mastering algorithms analysis concepts.

3.1.1 IRT analysis
To perform IRT analysis we must dichotomize the answers.
We awarded 1 point for r ≥ 0.75 and 0 point for r < 0.75.
We analyzed each chapter independently, considering all ex-
ercises in a chapter as part of an assignment. We used R sta-
tistical software (ltm package) and built a 1PL model for our
investigation. For each OpenDSA chapter, we computed the
item characteristic curves (ICC), item information curves



(IIC), and test information curves (TIF). For each curve, the
x−axis represents the students’ ability from −4 to 4, where
x = 0 means average ability. ICC shows the probability of
a score of 1, given a student’s ability. IIC shows how much
information each exercise can tell us about a students’ abil-
ity. TIF shows how reliable the overall test (or a collection
of exercises) is at distinguishing students with different abil-
ity. Harder tests would better distinguish between students
with above-average ability, while easier tests would better
distinguish between students with below-average ability.

An ICC graph lets us see the probability of getting a score
of 1 for students with average ability. Harder exercises will
have Pi(0) < 0.5. In Figure 1, we see that for three of the
most difficult exercises, the probability that a student with
average ability will get a score of 1 is less than 0.5, indicat-
ing that those exercises distinguish students with average
ability from those with above average ability, but do little
to distinguish weaker from average students. On the other
hand, an easy question on the binary search algorithm has
a graph Pi(θ) = 1. Thus it does not give us any information
about students’ ability. The curves for the easier exercises
shown in Figure 2 show differences between students with
below average ability in contrast with average and above av-
erage ability (θ ≥ 0). Another possible interpretation of this
result is that these exercises are relatively good at differen-
tiating students who studied from those who did not. The
TIF graph is a combination of all IIC curves, and indicates
the overall performance of the test.

Algorithm analysis chapter exercises: Most students
did not fare well on exercises in the introductory chapter
on algorithm analysis, as shown in Figures 1 and 2. Thus
these exercises gave us information about which students
have above-average ability.

Figure 1: Algorithm
analysis ICC

Figure 2: Algorithm
analysis IIC

Linear Structures exercises: These students were al-
ready familiar with linear structures, since these are taught
in prerequisite courses. Students could easily get a score of 1
by our difficulty measure for most problems in this chapter,
and so help to identify students with below average ability
(x < 0). However, three exercises appeared to be not so
easy for students. They covered list overhead concepts (a
new topic for them), array list concepts, and a small pro-
gramming exercise. Students who did poorly (bottom quar-
ter) on these exercises scored an average 65 on Midterm 1
compared to 76 for the rest of the class (a significant differ-
ence at α = 0.05). They received an average score of 73 on
Midterm 2 compared to 79 for the rest of the students (a
significant difference at α = 0.05). They scored an average

Figure 3: Sorting TIF Figure 4: Binary trees
TIF

of 106 on the final, compared to 112 for the rest of the class,
not a statistically significant difference.

Sorting exercises: The sorting chapter has the most ex-
ercises, with varying difficulty levels. Summary exercises
covering more advanced sorting algorithms (quicksort, radix
sort, mergesort, and heapsort) seemed to provide more infor-
mation about students with above average ability (x > 0).
Overall, the sorting chapter exercises seemed to provide a
good range of easy to difficult exercises, and provided good
information to distinguish between students with different
ability levels (TIF curve maximum at ability = 0).

Binary tree exercises: Binary trees are typically first in-
troduced in CS2 courses. Only three exercises appeared to
be difficult for students. These involved writing a recursive
function to traverse a tree, questions on heaps, and comput-
ing tree space overhead. Exercises in this chapter provided
us with information about students with below average abil-
ity (TIF curve maximum at ability < 0).

Hashing and graph exercises: As with other topics, pro-
ficiency exercises were relatively easy for the students, while
questions on the concepts and analysis were more difficult.
The graph chapter only had algorithm proficiency exercises
and so were not challenging to students. Therefore, the ex-
ercises gave us information to distinguish students with low
ability (TIF curve maximum at ability > 0).

We identified 21 (out of 100) exercises with IIC maximum at
ability ≥ 0. 19 of those exercises cover the algorithm analysis
portions of the different topics. The IRT analysis for all
OpenDSA exercises given to students enrolled in the course
revealed the following. Across chapters, exercises related to
algorithm analysis had IIC curve maximums at ability< 0.
Exercises that required students to solve small programming
problems also scored as“difficult”by our metric because they
tended to require multiple submissions to complete.

3.2 Using Hints and Guessing
Our analysis metric for “incorrect attempts” does not dif-
ferentiate between using a hint or submitting an incorrect
answer. So we looked in more detail at the types of incor-
rect submission for each exercise. We analyzed OpenDSA
exercises with respect the the number of hints used, and the
appearance of a trial-and-error strategy to “guess” the an-
swers. Harder exercises are expected to display a higher rate
of hints use and/or trial-and-error.



Exercises using the KA framework (multiple choice, T/F,
fill-in-the-blank, and one-step proficiency exercises) gener-
ate a series of question instances on the topic. The student
must get a certain number correct (typically five) to com-
plete the exercise. One point is deducted from the student’s
credit toward this requirement when they submit an incor-
rect answer, to discourage guessing. Students can also take
one or more hints that explain the answer to the question.
In this case, the attempt is not graded (no point is awarded
or deducted toward the threshold).

To analyze exercises based on students’ hint use, we com-
puted the hint ratio hr = #of hints used

#of total attempts
for each KA ex-

ercise. Four exercises are potential outliers as measured by
hr, related to quicksort, hashing, calculating overhead for
trees, and calculating overhead for lists. To analyze exer-
cises based on the rate of trial-and-error, we calculated the
incorrect ratio ir = #of incorrect answers

#of total attempts
for each KA exercise.

Inspecting exercises in the fourth quartile (exercises in the
highest 25% incorrect ratio), we found that they are related
to the topics algorithm analysis, heaps, quicksort, radixsort,
shellsort, and heapsort.

The seven exercises shown in Table 1 had high hint or high
incorrect answer ratios. They relate to topics covering math-
ematical background and runtime analysis of quicksort, hash-
ing, and shellsort. 45% of students heavily (third quartile
and up for all exercises) used hints, and provided many
incorrect answers when solving these seven exercises. We
found that most exercises with low incorrect answer and hint
ratios are for stacks, arrays, and lists. These are topics that
most students know from previous courses. When using high
rate of hint use as a measure of exercise difficulty, we found
that exercises related to algorithm analysis and mathematics
topics appeared to be more “difficult”. Algorithm analysis
was also identified as difficult by IRT analysis.

Table 1: IR and HR for difficult exercises

Exercise hr ir Topic
ListOverhead 0.93 0.6 List Overhead

Analysis
TreeOverheadSumm 0.78 0.73 Tree Over-

head Analysis
QuicksortSumm 0.32 0.67 Quicksort

Analysis
AlgAnalSumm 0.24 0.77 Algorithm

Analysis
MthBgSumm 0.25 0.63 Mathematical

background
ShellsortSumm 0.16 0.61 Shellsort
QuicksortPartitionPRO 0.27 0.58 Quicksort’s

partition

3.3 Model Answer Use and Exercise Reset
Algorithm proficiency exercises require students to repro-
duce the major steps of an algorithm. Proficiency exercises
come with a “model” answer that can be viewed at any time
(though doing so voids that problem instance for credit, and
so the student must do another problem instance). The stu-
dent can click a“reset”button to get a new problem instance.
We analyzed OpenDSA exercises with respect to model an-

swer use and “reset” as a measure of (exercise) difficulty.
Students are expected to reset or view model answers more
for harder exercises. For each proficiency exercise, we an-
alyzed the number of student attempts and the frequency
of student access to the model answer dialog. Our analy-
sis showed that heap and quicksort exercises have a model
answer view rate approaching or exceeding 50%, which is
greater than the mean (µ = 25.5) plus one standard devia-
tion (σ = 16) of the rates distribution. This finding indicates
that these exercises are relatively more difficult compared to
other proficiency exercises.

We also investigated student activity log data to learn when
students access the model answer box by computing: (i)% of
students who tried the exercise, then opened the model an-
swer dialog before they received enough points to get credit
for the exercise; % of students who opened the model answer
dialog before attempting the exercise; and % of students who
opened the model answer dialog after they received profi-
ciency credit for the exercise.

A model answer shows how to solve a problem with less
detail, while slideshows and visualizations (available to the
students before attempting the exercise) carefully explain
the concepts. We tried to determine if students use model
answers as a substitute for viewing slideshows and visualiza-
tions. For the heap exercises, we found that about 35% of
the students attempted an exercise before going through any
slideshow included in the section. This result indicates that
students might be using model answers (on certain topics)
because they overlook and/or rush through visualizations
when studying. We found that a majority of students (62%
on average) opened the model answer before attempting the
heap exercises. For the quicksort exercise, we found that
most students (67%) opened the model answer dialog after
an incorrect attempt. 24% of students opened the model
answer dialog before attempting the exercise.

For each proficiency exercise, we looked at the percentage
of students who returned back to solve the exercise after
receiving proficiency credit. We found that exercises with
a high model answer view rate have a lower level of post-
proficiency attempts. 27% of students solved them post pro-
ficiency, compared to almost 50% for other exercises. This
is somewhat surprising, as students presumably use an ex-
ercise post-proficiency in order to study the material for ex-
ams. We might have expected the most difficult exercises to
be targets for additional study.

We computed the ratio of correct attempts over number of
reset button clicks, and the ratio of all attempts over number
of reset button clicks. The correlation between the two ratios
was r2 = 0.99. Exercises with lowest ratios (bottom 25%)
were related to quicksort, heaps, shellsort, and binary trees
topics. When using number of model answer views and use
of reset button as measures of exercise difficulty, we found
that the hardest exercises are related to the topics of heaps
and quicksort. These exercises have higher use of model
answers, higher exercise reset rates, and lower levels of post-
proficiency attempts compared to other exercises. We note
that proficiency exercises cover only algorithm mechanics,
and so do not test students on more theoretical concepts.
Thus, this analysis is only comparing the relative difficulty



of understanding the mechanics of various algorithms, and
so does not address the question of the relative difficulty of
algorithm analysis versus algorithm mechanics.

4. INSTRUCTOR SURVEY RESULTS
To validate our process, we compared the results of auto-
mated analysis with opinions of course instructors. To that
end, we distributed a survey to the CS education commu-
nity via the SIGCSE mailing list. We asked respondents:
(i) how long they have been teaching a post-CS2 course on
Data Structures and Algorithms; (ii) what topics from such
a course are the most difficult for students to understand;
and (iii) what topics from such a course are the most difficult
to teach. We received 23 responses with a mean teaching ca-
reer of 16 years (median 15 years). Since a concept can be
defined using different terms, we grouped answers that we
considered to refer to the same topic. The result was 12
topics considered most difficult for students to understand,
and 8 topics most difficult to teach. Table 2 shows the top 6
difficult topics to learn and to teach. Among the top topics
considered hard for students, only trees and heaps are not
also present in the list of hard topics to teach.

Table 2: Summary of survey responses

Topic N %
Most difficult topics for students
Dynamic programming 7 18
Algorithm analysis 6 15
OOP & Design 6 15
Recursion 4 10
Trees, Heaps 3 7
Proofs 3 7

Most difficult topics to teach
Complex algorithms 8 30
OOP & Design 4 15
Proofs 4 15
Algorithm analysis 3 11
Recursion 3 11
Dynamic programming 2 7

Dynamic programming had the most votes as difficult for
students, but we note that most CS3 courses to not cover
this in depth. Algorithm analysis received the next highest
number of votes. Our IRT and log analyses also identify
algorithm analysis as a hard topic for students. Instructors
mentioned students’ lack of proficiency in mathematics as a
major reason why algorithm analysis proves hard. Instruc-
tors wrote “mathematical sophistication is the issue here”,
and “because students are afraid of math”. Our analysis of
use of trial-and-error also revealed that students are not at
ease with mathematics topics. To explain why algorithms
analysis is hard to teach, one instructor wrote “I still do
not have good instructional material”. That reason was also
used for other topics like graphs and design. Heaps is an-
other topic that was identified as hard both by our analysis
and by instructors. In general, the survey responses corre-
spond fairly well to our automated process.

5. ALGORITHM ANALYSIS IS HARD
Our analysis shows that exercises related to algorithm anal-
ysis are harder than exercises covering algorithm mechanics.
It also reveals that students might have some difficulty with

heaps and quicksort. Algorithm analysis is of particular in-
terest since a main goal of CS3 is to teach students how to
analyze algorithms, in order to design efficient software so-
lutions. That is why algorithm analysis sections are present
in almost all topics covered in the course. Careful analysis
of the data logs reveals certain behaviors by students that
could explain why students struggle with these concepts.

5.1 Not spending enough time
We analyzed interaction logs from use of OpenDSA at three
universities (Virginia Tech, University of Texas El Paso, and
University of Florida). Table 3 shows estimated reading time
for the algorithm analysis material from three sorting mod-
ules (Insertionsort, Mergesort, and Quicksort). More than
74% of students spent less than one minute on the analysis
material for each of the three modules. Based on this re-
sult, we believe that most of the students are not reading
the analysis material.

Table 3: Time reading algorithm analysis material

University Module N µ(sec) % < 1 min
VT Insertionsort 98 63.57 74.48

Mergesort 96 39.79 78.12
Quicksort 92 64.71 73.91

UTEP Insertionsort 26 49.84 80.76
Mergesort 22 41.45 77.27
Quicksort 16 16.18 93.75

Florida Insertionsort 53 40.39 84.90
Mergesort 44 18.63 95.45
Quicksort 39 26.12 92.30

All Insertionsort 177 54.6 78.52
Quicksort 147 49.2 80.94

86% of students responding to a survey indicated that it is
easier for them to understand how an algorithm works than
to analyze the running time for that algorithm. Quotes in-
clude: “determining asymptotic running time because it is
harder to visualize and less intuitive”, “Complexities are con-
fusing and math-like”, “I think understanding how an algo-
rithm work is easy. It is the style of presentation”, “How the
algs work. It is dependent on material, also abstract stuff is
harder for me to understand”.

78% of students who are more comfortable with dynamics
attributed this to the material, as algorithm analysis is ab-
stract and requires familiarity with mathematical notations.
The other 22% attributed this to how concepts are presented
in OpenDSA (dynamics are presented using visualizations,
analysis is presented mostly through text). Quotes regard-
ing the usefulness of OpenDSA’s algorithm analysis content
include: “Not any more useful than any other book”, “Not as
much as learning the algorithms themselves, but I felt it was
as useful as any resource could be on the topic”, “Yes, but
not as much as understanding the algorithms”, “It could have
been more interactive with showing why the analysis was the
way that it was”, “I found it much more useful on Data struc-
tures. Algorithm analysis doesn’t benefit quite as much from
animations”, “It was very detailed and kind of hard to fol-
low”, “I’d like there to be more visuals for analysis”. Clearly
respondents did not find the OpenDSA material on algo-
rithm analysis different from other textbooks on that topic.
This is not what they expected from OpenDSA, whose goal
is to present content interactively.



5.2 Content presentation not engaging
When students were asked to provide suggestions for im-
proving presentation of the analysis material in OpenDSA,
most indicated they were expecting a more interactive pre-
sentation in the form of visualizations. Quotes include: “Vi-
sualizations definitely help.”,“I think making the clickthrough
pictures into actual animations would be nice”, “more ani-
mation, the visualizations are great!”, “more visualizations is
always good”, “Visualizations always help :)”, “visualizations
showing each step of analysis would help”, “an animation
will make a much bigger difference.”

6. CONCLUSION AND FUTURE WORK
Educational resources are rapidly moving online. As eText-
books and interactive exercises become more prevalent, tech-
niques to automatically discover the most difficult topics for
students will become increasingly important. Doing so al-
lows both instructors and designers of instructional content
to focus their resources on the most difficult topics. Per-
haps resolving the difficulty might be as simple as fixing a
buggy exercise. But more generally, we find that specific
concepts are truly hard. By examining the topic in detail,
including its method of presentation, we might uncover bet-
ter approaches to instruction, leading to better outcomes.

To illustrate, we are working on addressing the issues raised
by students regarding the lack of visual presentation for al-
gorithm analysis material in OpenDSA. Inspired by the con-
cept of visual proofs [12], a set of Algorithm Analysis Visu-
alizations (AAVs) were implemented for OpenDSA sorting
modules [8]. We have collected preliminary data with two
small classes using the sorting analysis visualizations. Sum-
mary results were collected for two modules teaching Inser-
tion Sort and Quicksort. A Kruskal Wallis tests showed a
significant difference (p < 0.01) between the time spent for
text versus visualizations for these two modules. This indi-
cates that students spend more time on the material when
presented as visualizations. Having proved the value of the
concept, we will continue to expand on this approach.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the National Sci-
ence Foundation under Grants DUE-1139861, IIS-1258571,
and DUE-1432008.

8. REFERENCES
[1] R. Baker, A. Corbett, and K. Koedinger. Detecting

student misuse of intelligent tutoring systems. In
Proceedings of the 7th International Conference on
Intelligent Tutoring Systems, pages 531–540, 2004.

[2] D. Barker-Plummer, R. Cox, and R. Dale. Student
translations of natural language into logic: The grade
grinder corpus release 1.0. In Proceedings of the 4th
international conference on educational data mining,
pages 51–60, 2011.

[3] M. Berges and P. Hubwieser. Evaluation of source
code with item response theory. In Proceedings of the
2015 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’15, pages
51–56, 2015.

[4] P. Brusilovsky, J. Grady, M. Spring, and C.-H. Lee.
What should be visualized?: Faculty perception of

priority topics for program visualization. SIGCSE
Bulletin, 38(2), June 2006.

[5] N. Dale. Content and emphasis in CS1. SIGCSE
Bulletin, 37(4):69–73, Dec. 2005.

[6] N. B. Dale. Most difficult topics in CS1: Results of an
online survey of educators. SIGCSE Bulletin,
38(2):49–53, June 2006.

[7] F. Drasgow and C. L. Hulin. Item response theory.
Handbook of industrial and organizational psychology,
1:577–636, 1990.

[8] M. F. Farghally, E. Fouh, S. Hamouda, K. H. Koh, and
C. A. Shaffer. Visualizing algorithm analysis topics. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, page 687, 2016.

[9] E. Fouh, D. A. Breakiron, S. Hamouda, M. Farghally,
and C. A. Shaffer. Exploring students learning
behavior with an interactive etextbook in computer
science courses. Computers in Human Behavior, pages
478–485, December 2014.

[10] E. Fouh, V. Karavirta, D. A. Breakiron, S. Hamouda,
S. Hall, T. L. Naps, and C. A. Shaffer. Design and
architecture of an interactive etextbook–The
OpenDSA system. Science of Computer Programming,
88:22–40, 2014.

[11] K. Goldman, P. Gross, C. Heeren, G. L. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Setting
the scope of concept inventories for introductory
computing subjects. Transactions on Computing
Education, 10(2):5:1–5:29, June 2010.

[12] M. T. Goodrich and R. Tamassia. Teaching the
analysis of algorithms with visual proofs. In SIGCSE
Bulletin, volume 30, pages 207–211, 1998.

[13] R. K. Hambleton and L. L. Cook. Latent trait models
and their use in the analysis of educational test data.
J. of Educational Measurement, 14(2):75–96, 1977.

[14] P. Jarus̆ek and R. Pelánek. Analysis of a simple model
of problem solving times. In S. Cerri, W. Clancey,
G. Papadourakis, and K. Panourgia, editors,
Intelligent Tutoring Systems, volume 7315 of LNCS,
pages 379–388. Springer, 2012.

[15] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267–288,
September 2004.

[16] G. Rasch. Probabilistic models for some intelligence
and attainment tests. Danmarks Pædagogiske Institut,
1960.

[17] G. Ravi and S. Sosnovsky. Exercise difficulty
calibration based on student log mining. In
Proceedings of DAILE: Workshop on Data Analysis
and Interpretation for Learning Environments, 2013.

[18] L. A. Sudol and C. Studer. Analyzing test items:
Using item response theory to validate assessments. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages
436–440, 2010.

[19] W. J. van der Linden and R. K. Hambleton. Handbook
of modern item response theory. Springer, 2013.


